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On the Derivation of the Generalized
Telegraphist’s Equations for Full-Wave
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Abstract—This letter discusses a formulation of the generalized
telegraphist’s equations for the rigorous analysis of chirowaveg-
uides that has recently been reported in the literature. It is found
that when a chiral medium is in contact with the perfect electric
conducting wall of the waveguide, the boundary conditions are
not satisfied on the wall. A new formulation is proposed to
overcome this limitation. Both formulations are applied to the
calculation of the dispersion diagrams and field distributions of
the completely filled parallel-plate chirowaveguide and the results
are compared. Qur proposed formulation is found to provide
satisfactory results when analyzing such a structure.

1. INTRODUCTION

N recent years considerable attention has been given to

the study of wave propagation in chirowaveguides (CW’s),
i.e., waveguides containing chiral media. This growing interest
stems from the potential application of these structures to the
design of novel microwave and millimeter-wave components
as well as from the possibility of developing new measure-
ment techniques for the determination of material parameters
of chiral composites [1]. Unfortunately, exact solutions are
feasible only for a strictly limited number of structures, e.g.,
parallel-plate [2], [3] and circular CW’s [4]. To overcome this
limitation, a number of rigorous numerical techniques have
been proposed [4]-[7].

This letter discusses a formulation of the generalized tele-
graphist’s equations (GTE’s) that has recently been proposed
for the study of closed CW’s [7]. It is shown that the GTE’s
derived in [7] are not valid for the full-wave analysis of CW’s
containing chiral media in contact with a perfect electric con-
ducting (PEC) wall because the boundary conditions are not
satisfied on such a wall. To overcome this problem we propose
an alternative formulation of the GTE’s. Both formulations are
applied to the calculation of the dispersion diagrams and field
distributions of the completely filled parallel-plate CW, and
the results are compared with the exact solutions.

II. GTE’s FOR FULL-WAVE ANALYSIS OF CW’s

Consider a parallel-plate waveguide containing chiral media.
We assume that the CW is uniform in the z direction and
the electromagnetic field propagates along the z axis. For
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electromagnetic fields with a time dependence of the form
exp(jwt), the constitutive relations in the chiral media are
given by
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where ¢ is the permittivity, p the permeability, and £ is
the chirality admittance. In general, all three parameters are
assumed to be complex functions of the y coordinate. For
lossless chiral media, € and 4 are real parameters, while ¢ is
imaginary.

The procedure described in [7] to derive the GTE’s of a
CW can be briefly summarized in the following steps. First,
the unknown E and H fields of the CW are expressed in terms
of the normal modes of the corresponding empty waveguide,
€ and k. Then, these modal expansions are substituted into
Maxwell’s equations and the Galerkin method is applied, re-
sulting in a system of linear equations. Finally, the coefficients
of the expansions of the longitudinal field components are
eliminated, leading to a matrix eigenvalue equation for the
propagation constants of the CW under analysis.

Since each basis function satisfies the boundary condition
h -G, = 0 on the PEC wall of the empty waveguide, the
boundary condition H - @, = 0 is enforced on the PEC wall
of the CW. This boundary condition for the H field is correct
provided that the medium in contact with the PEC wall is
isotropic (achiral), However, for the chiral case, the boundary
condition B - @» = 0 must be fulfilled on the PEC wall (it is
clear from (1) that B i, = 0 does not imply that H.@,=0).
Therefore, the GTE’s derived in [7] are only valid when the
medium in contact with the PEC wall of the CW is isotropic.

To overcome this limitation we propose the expansion of
the B field instead of the H field. To illustrate this alternative
formulation, we will consider the derivation of the GTE’_‘s for
the parallel-plate CW. For this case, we can express the £/ and
B fields in terms of the TEM, TM(y) and TE|,,) modes of the
empty parallel-plate waveguide as
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where V] s, V(i), I g, Iy, V(j), and I[Z ) are the coefficients
of the expansions, b is the distance between the PEC parallel
plates, kc(n) = ken) = n/b, and a spatial variation of the
form exp(—jvz) is assumed in the z direction, where v (y =
o+ j@) denotes the propagation constant. The functions T{,,)
and 1, are the generating functions of the TM(,,y and TE[,
modes, respectively. They are given by

{T<n> } _ \/§ { ko sinkemyy) }
Tim) b \kopmy cos(kepmy) J

The primes in (2) are used to denote derivative with respect
to y.

For the sake of simplicity, in the following we assume non-
permeable chiral media, i.e., 4 = pg. Applying the procedure
described previously, we obtain the following GTE’s:

ItnTna

(3

Vo) = jwpol(o) (4a)
Wew ==,

) b
§
x| 22V (2k2 1/0 LTy dy

=1
be
—/(; i Ty

Ty T .
+ZI()kC(1)/ 18 o dy +quof(n)

(4b)
YWim) = Jwitod[m) (40)
b o0 b
Jw Vio)/ / ’
1 —= [ edy+ Vi eTi\dy
=717/ ; [ T
© b
20 Iy [ €T ydy 4d)
i=1 0
iy = jw K(-U—)/bgT’ dy+iV /bsT’.T’ dy
@) Vo Jo ST 2V [eete

oo b
~2p0 ) 11 / 11 1 Ty Ay
=1 0
. 1 b
i) = jw | 200 (%/ ET]dy
0
+ZI(1)/ <fT(z)T[m]dy>

=1

oo b
+ZV[J]/ €Tt
J=1 0

7
1Tty 4y

(4e)

IEEE MICROWAVE AND GUIDED WAVE LETTERS, VOL. 6, NO. 4, APRIL 1996

1'8:—Exacf * GTEs (B~field) * GTEs (H—field)
° [ ) . wl wimiat
< F +
S 12_%
o i
m [

0.6F
o
x 0.0
™~ C
o) [
< [
=2 [
< —0.Gj
! r

_12 RIS A B il L SIS AW R
0 3 6 9 12 15
ko*b
Fig. 1. Normalized propagation constant as a function of the normalized

frequency for the completely filled parallel-plate CW with £ = go. u = po,
and £ = j 1 mS.
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where the indexes n and m range from one to infinity.
For practical purposes this doubly infinite system of linear
equations is truncated to a finite number of basis functions,
ie, N TM(,) modes and M TE[,) modes. The eigenvalues
of (4) are the propagation constants of the CW under analysis
and the field distributions are obtained from the corresponding
eigenvectors by using (2).

III. NUMERICAL RESULTS

To investigate the validity of the two formulations of the
GTE’s discussed above from a numerical viewpoint, we will
consider the characterization of the completely filled parallel- -
plate CW. Exact results are available for this structure [2],
[31.

Fig. 1 shows the normalized propagation constants of the
first five modes as a function of the normalized frequency,
kob, where kg is the wavenumber of free-space. The value of
the chirality admittance is £ = j 1 mS. The results obtained
with both formulations are in very good agreement with the
exact solutions.

However, the higher the value of £ the worse the results ob-
tained with the I7/-field formulation become. This is illustrated
in Fig. 2, which shows the convergence curves calculated with
the H-field formulation for ¢ = j 5 mS. It can be seen that the
convergence is dramatically slow, and it becomes slower as the
order of the mode increases. On the other hand, if the B-field
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Fig. 2. Convergence curves calculated with the H-field formulation for the
first five modes of the completely filled parallel-plate CW with ¢ = &g,
p = po, £ = j 5 mS, and kob = 2.094.

formulation is used, 21 basis modes are enough to obtain a
relative error of less than 0.3% for the five modes considered.

Finally, Fig. 3 shows the field patterns of the H- and B-
field components normal to the PEC plates of the CW, i.e., H,
and B,. This figure shows the dominant mode, which is an
even mode. Therefore, the field patterns are plotted between
y = 0 and y = b/2. Each curve has been normalized to the
maximum of its modulus. It can be seen that the exact value of
H, at the PEC plates (y = 0 and y = b) is nonzero; however,
when the H-field formulation is used, this value is forced to
zero. Thus, even for cases where the H-field formulation gives
good results for the propagation constant the corresponding
field patterns are wrong.

IV. CONCLUSION

In the previous derivation of the GTE’s for full-wave
analysis of CW’s, the H field was taken as unknown and
was therefore expressed in terms of the modes of the empty
waveguide, so the boundary condition H -dn, = 0 was enforced
on the PEC wall of the CW. As a consequence, the resulting
formulation is only valid when the medium in contact with
the PEC wall of the CW is isotropic (achiral). However, if the
B field is expanded instead of the H field, the more general
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Fig. 3. Field distribution for the Hy, and B, components of the dominant
mode of the completely filled parallel-plate CW with € = eo. pt = po. £ =j
1 mS, and kgb = 2.094.
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boundary condition B. dn = 0 is fulfilled on the PEC wall
of the CW. The validity of this latter formulation for the
analysis of CW’s has been demonstrated by applying it to the
calculation of the dispersion diagrams and field distributions
of the completely filled parallel-plate CW. By contrast, the
formulation based on the H field leads to wrong results when
analyzing this structure.
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