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Abstract-This letter discusses a formulation of the generalized

telegraphist’s equations for the rigorous analysis of chirowaveg-

uides that has recently been reported in the literature. It is found

that when a chiral medium is in contact with the perfect electric

conducting wall of the waveguide, the boundary conditions are

not satisfied on the wall. A new formulation is proposed to
overcome this limitation. Both formulations are applied to the

crdculation of the dispersion diagrams and field distributions of

the completely filled parallel-plate chirowaveguide and the results
are compared. Our proposed formulation is found to provide
satisfactory results when analyzing such a structure.

I. INTRODUCTION

I N recent years considerable attention has been given to

the study o-f wave propagation in chirowaveguides (CW’S),

i.e., waveguides containing chiral media. This growing interest

stems from the potential application of these structures to the

design of novel microwave and millimeter-wave components

as well as fr~m the possibility of developing new measure-

ment techniques for the determination of material parameters

of chiral composites [1]. Unfortunately, exact solutions are

feasible only for a strictly limited number of structures, e.g.,

parallel-plate [2], [3] and circular CW’s [4]. To overcome this

limitation, a number of rigorous numerical techniques have

been proposed [4]-[7].

This letter discusses a formulation of the generalized tele-

graphist’s equations (GTE’s) that has recently been proposed

for the study of closed CW’s [7]. It is shown that the GTE’s

derived in [7] are not valid for the full-wave analysis of CW’s

containing chiral media in contact with a perfect electric con-

ducting (PEC) wall because the boundary conditions are not

satisfied on such a wall. To overcome this problem we propose

an alternative formulation of the GTE’s, Both formulations are

applied to the calculation of the dispersion diagrams and field

distributions of the completely filled parallel-plate CW, and

the results are compared with the exact solutions.

11. GTE’s FOR FULL-WAVE ANALYSIS OF CW’s

Consider a parallel-plate waveguide containing chiral media.

We assume that the CW is uniform in the z dh-ection and
the electromagnetic field propagates along the z axis. For
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electromagnetic fields with a time dependence of the form

exp (jut), the constitutive relations in the chiral media are

given by

fi=E_i-@ (la)

ii =:-@ (lb)

where s is the pertnittivity, H the permeability, and < is

the chirality admittance. In general, all three parameters are

assumed to be complex functions of the y coordinate. For

lossless chiral media, E and u are real pamrneters, while & is

imaginary.

The procedure described in [7] to derive the GTE’s of a

CW can be briefly s~mmatized in the fcllowing steps. First,

the unknown ~ and H fields of the CW are expressed in terms

of the normal modes of the corresponding empty waveguide,

Z and h. Then, these modal expansions are substituted into
Maxwell’s equations and the Galerkin method is applied, re-

sulting in a system of linear equations. Finally, the coefficients

of the expansions of the longitudinal field components are

eliminated, leading to a matrix eigenvalue equation for the

propagation constants of the CW under ;analysis.

Since each basis function satisfies the boundary condition

~ . tin = O on the ~EC wall of the empty waveguide, the

boundary condition H . dn = O is enforced :n the PEC wall

of the CW. This boundary condition for Ithe If field is correct

provided that the medium in contact with the PEC wall is

isotropic (a$hiral). However, for the chiral case, the boundary

condition 1? . d’n = O must be fulfilled on the PEC wall (it is

clear from (1) that ~.& = O does not imply that H. d~ = O).

Therefore, the GTE’s derived in [7] are only valid when the

medium in contact with the PEC wall of the CW is isotropic.

To+ overcome this limita~ion we propose the expansion of

the 1? field instead of the H field. To illustrate this alternative

formulation, we will consider the derivation of the GTE~s for

the parallel-plate CW. For this case, we can express the E and
E fields in terms of the TEM, TM(.) and TE[ml modes of the

empty parallel-plate waveguide as

w r., ~ 1

cm

+ ~ kc(i)v& T’(i)dz

‘i=]

(2a)
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(2b)
j’=l

where v JI, v(i), ~[J], ~(i),v(;), and ~fJ1we the coefficients
of the expansions, b is the distance between the PEC parallel

plates, k.(n) = kC[nl = n7r/b, and a spatial variation of the

form exp(–j~z) is assumed in the z direction, where T (~ =

a i- j~) denotes the propagation constant. The functions T(n)

and T[nl are the generating functions of the TM(n) and TE[ml

modes, respectively, They are given by

The primes in (2) are used to denote derivative with respect

to y.

For the sake of simplicity, in the following we assume non-

permeable chiraJ media, i.e., p = po. Applying the procedure

described previously,

7~(0) = .i~PO~(0)

–j~j(n)
‘YV(n) ‘ --J-

we obtain the following GTE’s:

(4a)

x

(4b)

Tv[ml = .iWvO~[ml (4C)
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Fig. 1. Normalized propagation constant as a function of the normalized
frequency for the completely filled parallel-plate CW with t = so. p = PO,

and~=jlmS.

(49

where the indexes n and m range from one to infinity.

For practical purposes this doubly infinite system of linear

equations is truncated to a finite number of basis functions,

i.e., N TM(n) modes and M TE[ml modes. The eigenvalues

of (4) are the propagation constants of the CW under analysis

and the field distributions are obtained from the corresponding

eigenvectors by using (2).

III. NUMERICAL RESULTS

To investigate the validity of the two formulations of the

GTE’s discussed above from a numerical viewpoint, we will

consider the characterization of the completely filled parallel-

plate CW. Exact results are available for this structure [2],
[3].

Fig. 1 shows the normalized propagation constants of the

first five modes as a function of the normalized frequency,

kob, where k. is the wavenumber of free-space. The value of

the chirality admittance is ~ = j 1 mS. The results obtained

with both formulations are in very good agreement with the

exact solutions.

However, the higher the value of& the worse the results ob-

tained with the II-field formulation become. This is illustrated

in Fig. 2, which shows the convergence curves calculated with

the H-field formulation for & = j 5 mS. It can be seen that the

convergence is dramatically slow, and it becomes slower as the

order of the mode increases. On the other hand, if the El-field
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Fig. 2. Convergence curves calculated with the H-field formulation for the
first five modes of the completely filled parallel-plate CW with E = &o,

P = Po, < = j 5 mS, and kob = 2.094.

formulation is used, 21 basis modes are enough to obtain a

relative error of less than 0.3% for the five modes considered.

Finally, Fig. 3 shows the field patterns of the H- and 13-

field componerlts normal to the PEC plates of the CW, i.e., 17Y

and By. This figure shows the dominant mode, which is an

even mode. Therefore, the field patterns are plotted between
y = O and y = b/2. Each curve has been normalized to the

maximum of its modulus. It can be seen that the exact value of

IZY at the PEC plates (y = O and y = b) is nonzero; however,

when the II-field formulation is used, this value is forced to

zero. Thus, even for cases where the H-field formulation gives

good results for the propagation constant the corresponding

field patterns are wrong.

IV. CONCLUSION

In the previous derivation of the GTE’s for full-wave

analysis of CW’s, the H field was taken as unknown and

was therefore expressed in terms of th$ modes of the empty

waveguide, so the boundary condition H. rin = O was enforced

on the PEC wall of the CW. As a consequence, the resulting

formulation is only valid when the medium in contact with

the PEC wall of the CW is isotropic (achiral). However, if the

B field is expanded instead of the H field, the more general
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F]g. 3. Field distribution for the Hv and Bv components of the dominant
mode of the completely filled parallel-plate CW with E = co. P = L@.( = .i
1 mS, and kob = 2.094.

boundary condition ~ . & = O is fulfilled on the PEC wall

of the CW. The validity of this latter formulation for the

analysis of CW’s has been demonstrated by applying it to the

calculation of the dispersion diagrams and field distributions

of the completely fillecl parallel-plate CW. By contrast, the

formulation based on the H field leads to wrong results when

analyzing this structure.
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